
Crowd-Based Programming for Reactive Systems
David Harel, Idan Heimlich, Rami Marelly and Assaf Marron

Department of Computer Science and Applied Mathematics

Weizmann Institute of Science, Rehovot, Israel

Email: {david.harel, rami.marelly, assaf.marron}@weizmann.ac.il, himlich.idan@gmail.com

Abstract—End-user applications aimed at the public in general
(mobile and web applications, games, etc.) are usually
developed with feedback from only a tiny fraction of the
millions of intended users, and are thus built under significant
uncertainty. The developer cannot really tell a priori which
features the users will like, which they will dislike, and which
ones will help create the desired outcome, such as high usage or
increased revenue. In these cases, providing adaptive
capabilities can be the key factor in the application's success.
Existing self-adaptive techniques can provide some of the
needed capabilities, but they too must be planned, and leave
the developers, and much of the development process, “out of
the loop”. We propose a development environment that allows
the wisdom of the crowd to influence the very structure and
flow of the program being created, by voting upon behavioral
choices as they are observed in early versions of the working
program. The approach still allows the developers to retain
known desired behaviors, and to enforce constraints on crowd-
driven changes. The developers can also react to ongoing
crowd-programmed feedback throughout the entire lifetime of
the application.

Keywords-Software Engineering; Reactive Systems; MDE;
 Scenario-based Programming; Incremental Development;

I. INTRODUCTION AND RELATED WORK

A growing number of applications, especially those

intended for mobile and web platforms, are aimed at

millions or even billions of users. While most development

methodologies call for a detailed elicitation process with

customers and users, the developers of such applications do

not have an effective way to communicate with the vast

majority of the large number of potential users, as part of

the software specification and design. They thus have to

resort to other means for predicting their needs. Consider,

for example, an adventure/quest game, in which users can

also purchase helpful resources. Should a suggestion to buy

a “power bottle” pop-up after losing a game or after

winning? Or should it be constantly, but passively,

displayed? Should a key to the treasure chest disappear if

not used in time, or should it remain available forever? And

when dealing with more practical applications, such as a

chat-bot, an online-store or a collaboration platform, the

considerations are, of course, different but the problem

remains. Common practices often call for the developer to

make such choices in advance or to manually collect and

apply feedback from selected users of early versions.

Agile development techniques indeed focus on obtaining

such feedback frequently from a select group of

stakeholders. More elaborate approaches to requirements

engineering call for systematic collection of user feedback

on designated features. For example, in [1], a “social

adaptation” methodology is proposed for the manual process

of requirements engineering, where the various design

choices are explicitly stated, the users vote on these, and

computer-aided analysis of the responses helps accelerate

the necessary modifications to the system. And, in [2] a

“social sensing” approach is proposed, where users are

tasked with actually collecting quality measures (such as

user comfort) that are needed for making adaptation

decisions, but which the system cannot collect on its own.

Another approach is to design the program so that it can

behave in a variety of ways, and to apply an automated

adaptation technique, such as reinforcement learning, to

allow the program to dynamically modify itself based on the

user’s actual behavior. Such adaptivity may be global, i.e.,

common for large groups of users, or can be designed to fit

individual-user needs.

The recent extensive survey [13] analyzes the state of

the art regarding the role of crowdsourcing in software

engineering. Based on this analysis the task of obtaining

end-user feedback with respect to an already-developed

application, seems to receive less attention.

Our research is motivated by the desire to have a

development and runtime environment where (a) an

unlimited number of users can constantly provide focused

feedback on the behavior of released applications, in the

form of suggested program changes; and (b) the rationale,

functionality, and expected effects of the automatically-

generated program changes are readily visible to the

developers, who can then make informed decisions on when

to allow, modify, or ignore the suggestions. Program

behavior thus incorporates enhancements that are based on

first-hand user feedback and comply with developer-

specified goals and constraints. We term this kind of

approach crowd-based programming.

To deal with the increasing complexity of software

systems, and the uncertainty around the behavior of their

environments, software engineers have turned to self-

adaptivity, where the system can change its behavior and

structure in response to changes in the environment, in the

user requirements, and even in the system itself. As can be

seen, e.g., in [14, 12, 4, 11], such adaptivity is often

application-specific and requires specialized design, which

2017 IEEE/ACM 4th International Workshop on CrowdSourcing in Software Engineering (CSI-SE)

978-1-5386-4041-8/17 $31.00 © 2017 IEEE

DOI 10.1109/CSI-SE.2017.3

9

may or may not be in line with other architectural

preferences. In particular, adaptive behavior that is based on

machine learning using neural nets [15] requires very

specific designs and flows. Involving users in the adaptation

process was proposed in [6], where the user can influence

the adaptation behavior both at run-time and in the long

term by setting individual preferences. This aims to balance

the required system adaptation and user control.

Such adaptive techniques are insufficient when the

developer wishes to create a relatively small number of

behaviors that will be essentially fixed for all or most users,

and at the same time reflect design choices that

accommodate the developers' intent as well as the goals and

preferences of a large and varied audience.

In this paper, we show how a general application-

independent design approach, namely, event-based
abstraction and scenario-based programming (SBP), can, in

addition to its other advantages, facilitate crowd-based

programming approaches (as introduced above) by

automatically translating systematically-collected end-user

feedback into application code. We describe and evaluate

our scenario-based crowd-programming approach and the

initial web-based development and runtime environment we

have built to support it.

II. SCENARIO-BASED/BEHAVIORAL PROGRAMMING

A basic principle of the scenario-based approach is to

abstract and model the behavior of the system and the users

as sequences of events. The infrastructure that generates

input and output events (such as button click, text entry, and

display of a screen object) is considered separate, and is

only secondary in the system’s design and analysis.

Execution progresses in cycles, a.k.a. supersteps, where

each user event is responded to by a sequence of system-

generated events until there are no more system events that

should be triggered. (In the present preliminary version of

our work, each superstep consists of a user event followed

by a single system event.)

Scenario-based programming (SBP), a.k.a. behavioral
programming (BP) was first introduced in [3, 9], with the

language of live sequence charts (LSC) and was later

extended to procedural languages like Java, C++ and

JavaScript (see, e.g., [10]). In SBP, system components are

scenarios, each of which describes an aspect of system

behavior, much in the way humans describe what a system

should do, either to each other or in a requirements

document. Such specifications can be natural and

incremental, and they simplify formal analysis and

(compositional) verification (see, e.g., [7]). Most relevantly

to the present research, SBP is conducive to adaptivity using

reinforcement learning [5] and automated non-intrusive

program repair [8].

Formally, the SBP/BP scenarios are automata, or state

machines. In each state, the scenario declares events that it

requests, i.e., ones that it wants to be considered for

triggering, and events that it blocks, i.e., forbids from

occurring. A scenario also has a transition function,

dictating, for each state and triggered event, the new state.

All scenarios are executed in parallel, in lockstep. Following

an event (user, environment or system) all affected automata

transition to their new states, and resynchronize. An event

that is requested by some scenario and is blocked by none is

then triggered. If there is more than one such enabled event,

selection is carried out according to some strategy, such as

random, probabilistic, or one based on lookahead or on

program synthesis. Affected scenarios then transition to new

states and the process repeats. This execution method,

termed play-out, yields integrated system behavior that

complies with the scenario-based specification. SBP also

enables play-in: an interactive process where the developer

specifies scenarios by recording and editing interactions

with the system being developed.

III. CROWD-BASED BEHAVIORAL PROGRAMMING

In addition to event abstraction and scenario-based

programming described above, our technique for crowd-

based adaptivity builds on the following principles:

Underspecification and temporary behavior: While

most system behavior would be fully specified, the

developer can allow cases where multiple events are

simultaneously enabled. User feedback then drives

incremental refinement of the final behavior. Until it is fully

specified, the system uses probabilistic event selection at

points of underspecification, and does not get stuck there. A

key assumption is that “bad” choices do not cause real

damage and are quickly found and eliminated.

 Programming with linear scenarios: Commonly,

program modules in any programming approach, SBP/BP

included, contain constructs for non-sequential flow, like

loops or if-then-else statements. While this is obviously

valuable, we maintain that creating complex specifications

from sequential rules and from separate sequential

exceptions thereto, is often also convenient, and aligns with

the way people tend to describe behavior. A linear scenario

is thus a sequence of events and states, reflecting one path

of program execution. It can be coded manually or recorded

in an interaction with the system. States contain declarations

regarding event choices, as described below.

Probability-driven scenario execution: In standard

SBP execution, in each state, one event that is requested and

not blocked is selected according to some strategy. Here we

propose that the declaration of requested and blocked events

in each state, be replaced by a weighted vote, or score ‒

positive or negative ‒ for each system event (with some

default for “don’t care”). When scenarios synchronize, the

then-current scores form a distribution, with high positive

scores yielding high probabilities and negative ones yielding

low probabilities. Below a certain score threshold, an event

is considered forbidden altogether. The event selection

decision is then random, according to the distribution. This

facilitates showing each behavior to some users, who will

10

then be able to provide feedback. The probabilities can carry

different meanings: the developer’s confidence in various

choices, the desire to force the system and its users to

experiment with certain scenarios, or perhaps to make the

final system behavior more varied and less predictable.

Ongoing user feedback: The system continuously

grades its probabilistic event selection based on user

feedback, which can be explicit, e.g., clicking like or dislike

meta-buttons automatically superimposed on application

screens, or implicit, where the application contains code that

assigns event scores based on actual user behavior (like

buying products, closing certain screens, etc.). The method

thus captures first-hand users’ reaction when they

experience actual system choices, which may be better than

having them comment on, say, system documentation or

custom questionnaires.

Representing crowd feedback as linear scenarios: A

user’s feedback (whether explicit or implicit) is presented as

a linear scenario, comprised of the events that led to a

particular application state, followed by the scenario’s

vote/score for the various events that may be triggered next,

with positive feedbacks increasing the scores and negative

ones reducing them. The crowd-formed scenarios are self-

standing, in that they modify overall application behavior

without modifying existing scenarios. Also, they clearly

convey to human users where and when they apply, and

how they influence event selection at those points. This

enables automated incorporation of such automatically-

generated scenarios into system behavior, as well as

informed manual adjustment by developers.

To illustrate these principles, consider a small online

supermarket application, whose main screen is shown in

Figure 1.

Figure 1. The product-list screen of the supermarket

application, with Like and Dislike buttons

Clicking on any screen object (product image, action button)

produces a corresponding user event. A scenario-based

specification would include, e.g., the following scenarios

(shown in pseudo code):

1. When(user-clicks-on-product); Score(show-prod.-info,10)
2. When(user-clicks-Buy);

Score(add-to-cart-&-show-prod. list,10)
3. When(user-clicks-Checkout);

Score(checkout,10,show-ad,1)

4. When(user-clicks-Checkout);
Score(checkout,10,show-ad,1);

When(user-clicks-Close-Ad);

{Score(checkout,10,show-ad,-100);

 ExitUpon(checkout)}

Figure shows Scenario 4 above in its automaton form. The

When() method lists one possible event and leads to the

next state. The method Score(e1,v1,e2,v2,…) assigns to each

system event ei the corresponding score value vi at that state.

The method ExitUpon(e1,e2,…) can be used in a scenario to

list events whose occurrence would cause the scenario to

terminate (go back to its initial state).

Scenario 4, for example, allows for both the checkout

screen and an advertisement to be shown. Users who prefer

not to see the advertisement can click the Dislike button

superimposed on it. When they do so, either a new scenario

is created, which traces the session’s event log and then

assigns show-ad a low score, or, if such a scenario already

exists, the score it assigns to the undesired event is reduced.

If the developer is unsure as to whether a click on a product

image should lead to add-to-cart or to show-prod.-info,

he/she can assign positive scores to the respective events,

and allow the users to vote. Similarly, the developer can use

scenarios and/or specialized APIs to analyze when, or how

often, users buy an advertised product, as opposed to

skipping the ad, and accordingly create scenarios that

increase or decrease the score of show-ad in certain states.

Score(checkout,10,
show-ad,1)

S1: “Wait for User
Action”

Score(checkout,10,
show-ad,-100)

Event:
User

clicked
Checkout

Score()

S2: “Allow Ad”

Event:
show-ad

Event:
user

clicked
Close-Ad

Event:
checkout XScore()

S3 S4: “Avoid Ad”

Figure 2. An automaton representation of a linear scenario: if
in the initial state S1 the user clicks Checkout, State S2 assigns
scores that cause either the checkout screen or an ad to be shown.
In the case in which an ad is shown and the user skips it, state S4
forbids the showing of an ad until checkout screen is shown.

IV. THE CROWD PROGRAMMING INFRASTRUCTURE

Towards experimenting with crowd programming, we

11

have developed a new BP infrastructure with the following

capabilities: (a) web-based; (b) automatic superimposition

of feedback buttons on application screens; (c) automatic

capture of feedback and creation and update of feedback

scenarios with respective scores; (d) developer interface for

specifying linear scenarios by manually simulating user

actions and recording the resulting user and system events in

line with play-in capabilities in LSC; (e) APIs for implicit

feedback via tracking of user behavior and dynamically

creating new scenarios; and (f) streamlined viewing and

assignment of scores of all system events at all system

states.

V. EVALUATION AND DISCUSSION

In evaluating the approach, we sought to answer two

main questions: (Q1) can the behavior for buying products

in a web application be formed based on user feedback?

(Q2) how easy will it be for a developer to understand the

automatically-created application scenarios built this way?

In our initial experiment, we used the above online

supermarket and another web-store application. In the initial

code, we specified only most basic behaviors, and a wide

variety of events was left enabled in each state. We also

coded collection of implicit feedback that reflects

developers’ interest in maximizing user spending; i.e., the

more the user buys the higher the score of system events in

scenarios that lead to this behavior. The two applications

were identical in their user interfaces, their events and the

initial programmed behavior, and differed only in the

offered products. However, we also told the users

(participants) that “one application is a supermarket and the

other is an online electronics store, like eBay”, and asked

them to set their expectations and behavior accordingly. The

users were also told that the application’s behavior may

change based on their actual usage and their explicit

feedback. In this initial evaluation, the users did not spend

real money and did not receive actual products.

Over the course of five days, a group of ten participants

experimented with the system. For the supermarket

application, 67 Like/Dislike feedbacks were submitted, and

44 new scenarios were generated, and for the electronics

store, 75 feedbacks were submitted and 43 new scenarios

generated (we did not keep track of which user provided

what feedback).

Regarding question Q1, when looking at the possibility

of showing a special-deals ad, as expected, negative

feedbacks were almost always received when the ad was

shown after the user clicked on a product. However, after

showing the shopping cart, showing the ad caused the user

to buy more products, yielding indirect positive feedback.

We also observed that the applications evolved differently:

after the user clicked a product image, the evolved

supermarket app added the product to the cart and returned

to the main product list, while the evolved electronics store

app proceeded to show product information and only then

moved to checkout. This difference in the effect on similar

applications shows that feedback has non-trivial value.

The second question, Q2, was not directly addressed by

a specific test, but it is our subjective experience that despite

the large number of generated scenarios, the developer

could readily understand each of them and was able to

create a mental model of the expected behavior of the

evolving application. Moreover, the developer was able to

simulate user behavior in specific flows, and check the

scores assigned to the various system events to see which

events were most or least likely to occur at a given point. As

is common in SBP, the technique also allows one to see how

the various scenarios affect the execution in each state.

We have thus described an application-independent,

crowd-based technique for collecting user feedback during

execution, and influencing future behavior accordingly. The

modularity of the modifications enables a wide variety of

implementation approaches. These include (a) choosing a

fixed reactive behavior for all users based on a majority user

vote; (b) retaining all behaviors with some probability

alongside a feedback mechanism towards indefinite

continuation of program evolution; and (c) providing users

with application behavior that is uniquely geared

specifically to their preferences.

Clearly, our current initial experience and evaluation

results, while positive, are of limited scope. Issues that are

left for future investigation include (a) using machine

learning techniques like neural nets and enhanced event

selection formulas to automatically aggregate crowd

feedback into fewer and more general recommendation

scenarios; (b) associating a set of feedbacks and preferences

with the individual who communicated them, and using the

information both in this user’s initial exploration and during

their regular use of the application; (c) supporting richer

scenarios and supersteps, e.g., ones which respond to a user

event with a sequence of system events (with flow-control)

rather than by just one event; (d) supporting variable data in

events and in the object model; (e) creating succinct

guidelines for placement and granularity of feedback-

collection points (Like/Dislike buttons) in an application,

including dynamic changes to such feedback collection and

possibly linking it to feature-models and software-product-

line planning; and (f) allowing users to specify the exact

target of their Like/Dislike vote, such as particular events in

the execution log or some screen elements.

Furthermore, it will be interesting to extend the above

into a broad, collaborative, concurrent, crowd-programming

methodology, yielding short cycles of experimentation-

feedback-modification-release. A key part of such a

methodology will be the flexibility in the feedback means

given to the end user. While some may be willing to

suspend their work with the product to open a trouble ticket,

with rationale, examples and attachments, others may wish

to just enter a one-line comment to capture their reaction,

while yet others may agree only to occasional, optional

clicking on a Like/Dislike button, while their main work and

train of thought remain focused. Eventually, such crowd-

12

based techniques may also be used to enhance

methodologies and tools for unit testing, integration tests

and system usability testing.

VI. CONCLUSION

Our crowd-based method for programming the behavior

of reactive systems allows developers to subject some

decisions to the wisdom of the crowd, while retaining

sufficient control themselves. We believe that such an

approach can become a key engineering practice in

developing applications for large and varied audiences.

VII. ACKOWLEDGEMENT

This research was supported in part by a grant from the

Israel Science Foundation (ISF).

REFERENCES

[1] R. Ali, C. Solis, I. Omoronyia, M. Salehie, and B. Nuseibeh.
Social adaptation: when software gives users a voice. 2012.

[2] R. Ali, C. Solis, M. Salehie, I. Omoronyia, B. Nuseibeh, and
W. Maalej. Social sensing: when users become monitors. In
Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software
engineering, pages 476–479. ACM, 2011.

[3] W. Damm and D. Harel. LSCs: Breathing Life into Message
Sequence Charts. J. on Formal Methods in System Design,
2001.

[4] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson,
M. Litoiu, et al. Software engineering for self-adaptive
systems: A second research roadmap. In Software
Engineering for Self-Adaptive Systems II, pages 1–32.
Springer, 2013.

[5] N. Eitan and D. Harel. Adaptive behavioral programming. In
23rd IEEE Int. Conf. on Tools with Artificial Intelligence
(ICTAI), pages 685–692, 2011.

[6] C. Evers, R. Kniewel, K. Geihs, and L. Schmidt. The user in
the loop: Enabling user participation for self-adaptive
applications. Future Generation Computer Systems, 34:110–
123, 2014.

[7] D. Harel, A. Kantor, G. Katz, A. Marron, L. Mizrahi, and
G. Weiss. On Composing and Proving the Correctness of
Reactive Behavior. In Proc. 13th Int. Conf. on Embedded
Software (EMSOFT), pages 1–10, 2013.

[8] D. Harel, G. Katz, A. Marron, and G. Weiss. Non-Intrusive
Repair of Reactive Programs. In Proc. 17th IEEE Int. Conf.
on Engineering of Complex Computer Systems (ICECCS),
pages 3–12, 2012.

[9] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer,
2003.

[10] D. Harel, A. Marron, and G. Weiss. Behavioral Programming.
Communications of the ACM, 2012.

[11] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[12] R. Laddaga. Active software. In Self-Adaptive Software,
pages 11–26. Springer, 2000.

[13] K. Mao, L. Capra, M. Harman, and Y. Jia. A survey of the use
of crowdsourcing in software engineering. Journal of Systems
and Software, 2016.

[14] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Tran. on
autonomous and adaptive sys. (TAAS), 4(2):14, 2009.

[15] J. Schmidhuber. Deep learning in neural networks: An
overview. Neural networks, 61:85–117, 2015.

13

